If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+0.36k=0
a = 6; b = 0.36; c = 0;
Δ = b2-4ac
Δ = 0.362-4·6·0
Δ = 0.1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.36)-\sqrt{0.1296}}{2*6}=\frac{-0.36-\sqrt{0.1296}}{12} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.36)+\sqrt{0.1296}}{2*6}=\frac{-0.36+\sqrt{0.1296}}{12} $
| -2(x-9)=x+3(x+2) | | IxI=5 | | 8+9.8x=3.6x-16+3.6x | | 4x-4+x=3x+10 | | -3{p+2}=-30 | | 7x-3x-4x=3x-3 | | 5x-19=3x+34 | | 2/5x+1/2=-9+1/3x | | X=35,5+-1,5y | | -4x+10=2x-1=9x-15 | | 0.25+0.60x=-0.80x-0.50 | | -2x-10=x | | 2(2a-5)=3(a-1)-4 | | 15+r=-15+2r | | x=41-8(2x+6)+3x58 | | Y=-5x+3(-6, | | 5b+5=3b+7 | | 7-6s=-59 | | 1.7x=-49 | | 12x-(-2)=9x-(-5) | | 20=8x-3x-10 | | 10=7x+4-4 | | 2x^2+128= | | -x^2+x-8=2x | | 129=3(-7n=8) | | 1/4+2/3x=-4/5x-1/2 | | 7(6x-5/8)+1=11 | | 6x+5=11-4x | | 0.4x+20=28 | | 16x/5=12 | | -1/4=-1/6-1/2c | | Z-3=z+4 |